Slice regular functions and orthogonal complex structures over $\mathbb{R}^8$

نویسندگان

چکیده

This work looks at the theory of octonionic slice regular functions through lens differential topology. It proves a full-fledged version open mapping theorem for functions. Moreover, it opens path possible use in study almost-complex structures eight dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cauchy kernel for slice regular functions

In this paper we show how to construct a regular, non commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results. AMS Classific...

متن کامل

An Orthogonal Basis for Functions over a Slice of the Boolean Hypercube

We present a simple, explicit orthogonal basis of eigenvectors for the Johnson and Kneser graphs, based on Young’s orthogonal representation of the symmetric group. Our basis can also be viewed as an orthogonal basis for the vector space of all functions over a slice of the Boolean hypercube (a set of the form {(x1, . . . , xn) ∈ {0, 1}n : ∑ i xi = k}), which refines the eigenspaces of the John...

متن کامل

Orthogonal basis for functions over a slice of the Boolean hypercube

We present a simple, explicit orthogonal basis of eigenvectors for the Johnson and Kneser graphs, based on Young’s orthogonal representation of the symmetric group. Our basis can also be viewed as an orthogonal basis for the vector space of all functions over a slice of the Boolean hypercube (a set of the form {(x1, . . . , xn) ∈ {0, 1} : ∑ i xi = k}), which refines the eigenspaces of the Johns...

متن کامل

A Phragmén - Lindelöf principle for slice regular functions

The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary p...

متن کامل

Extension results for slice regular functions of a quaternionic variable

In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2022

ISSN: ['1661-6960', '1661-6952']

DOI: https://doi.org/10.4171/jncg/452